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UDC 62-50 

ON A PROBLEM OF ESCAPE ALONG A PRESCRIBED CURVE* 

A. AZAMOV 

A differential game is considered, in which a pursuer can move over the whole plane 

with unit velocity. while the escaper can move along a prescribed curve with a 

bounded velocity greater than unity. An escape strategy is constructed, ensuring 

a positive constant lower bound for the distance between the players. 

1. Statement of the problem. A regular curve f of smoothness class Cz is pre- 

scribed on a plane, along which an escaper moves with a velocity not exceeding 0, o> I. The 

pursuer, whose velocity does not exceed unity in absolute value, moves over the whole plane 

and tries to overtake the escaper. A further refinement of the problem statement (inform- 

ativeness andclassof admissible strategies of the escaper, the concept of escape possibility, 

etc.) can be traced from the proof of the fundamental theorem in Sect.4. The paper's purpose 

is to construct an escape strategy permitting evasion from capture, as well as to derive an 

estimate for the distance between the pursuer and escaper. It is close in spirit to /1,2/. 

An escape problem in the case when there are an arbitrary number of pursuers, while the 

escaper moves in a neighborhood of an arbitrarily prescribed stright line, was solved in /l/. 

The existence of optimal strategies for both players was proved in /2/ in the case when the 

curve P is a circle. If in the game at hand the curve P is replaced by a graph, then once 

again a nontrivial game arises. 

2. Preliminary constructions. We introduce the following assumptions. 

Assumption A. The curvature of curve Pis bounded (in modul&) by a number i/p, p> 0. 

If p>i, then it is obvious that the curvature is bounded also by the number 1, so that 

we can set p= 1. Therefore, without loss of generality we can take p\<i or replace p by 
min (1, p). 

Assumption B. Curve r either is closed or is of infinite length in both directions 

from each of its points. 

Obviously, if curve I' has a finite length, even if in one direction only, then for spec- 
ific dispositions of the players at the start of the game the pursuer overtakes the escaper 

in finite time. See Sect.5 for the motivation of Assumption A. This Assumption enables us 
to localize the problem. Let Qa be an arbitrary point on curve P and H be a rectangle 

centered at point Qo, two sides of which areparallelto the tangent to curve r at point Q0 

and are of length kp, while the other pair of sides are half the size. Hereandsubsequently 

k is a positive number depending only on p and e and specially selected, while kc1/1/5. 

Lemma 1. In the neighborhood H of each point 00 Er the curve P can be represented, 

in an appropriate coordinate system as the graph of a function Y = f(z). I z I \i kp, where f EC', 
f(O) =1'(O)= 0. The inequalities 

I 

hold for function f(z). 

Proof. We introduce 
the axis 01 coincides with 
directed toward the center 

I\’ (I) 1 C 1 I I.@’ - z2)-“’ < k (1 _ k2)-'1' 
x 

(2.1 1 

12 1 < S (I) = 1 [I + f“ @)I” dz < ( I ,. (1 - k?)+ 

a Cartesian coordinate system as follows: point Q~ is the origin, 
the tangent to r at point Qa, and the positive semiaxis OY is 
of curvature if the curvature of curve P at point Q. is nonzero 

or is otherwise arbitrary (Figure). 

By virtue of the regularity of curve P it can be represented in every case by the graph 
of a function y =f(z) on some interval (--E,E). For values of z taken from this interval, us- 
ing Assumption A and integrating, we find 
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--r/p .s f’ (r)[l + f’2 (z)jf” ,c r/p 

Hence follows the first inequality in (2.1) for Ir\<e But 
if the first inequality in (2.1) is fulfilled on some inter- 

val containing the point z = 0, then the function y-f(~) has 
a bounded derivative and the curve F cannot go outside the 
sector formed by the straight lines 

y = t k (I - kz)-“‘z 

Therefore, the representation of curve F as the graphof func- 

tion y =f(.z) can be continued onto the segment j~J<kp since 

k < l/l/% 

3, Escaper's strategy. We introduce a number 6>0 as follows: if P,Q,< kzp, then 
6= J'oQo, otherwise 6 = P,Q,. (*). We consider the circle S :z2+yz= F. If the inequality Pop,> 
k*p obtains for the initial positions P, and Q,, of the pursuer and escaper, respectively, 

then we set the escaper's velocity equal to zero until PQ= k8p occurs. Here and subsequent- 

1Y p and Q are the players' positions at the current time f and PQis the distance between 
points P and Q. If, however, P,Q, < k2p, then by definition P. E S. Thus, we can take it that 

PO ES. To determine the escape direction on the circle S we divide the normal to curve F 

at point Q. into two semicircles Sk:2 =*((s* -.p)? For definiteness let P,E~-. Then the 

escaper is instructed to move away from point Q,, towards the side of increase of I, i.e., 

along the part Y = f(~),.z>O, of curve F (up to the point kp,f(kp)). 

4. Estimate of the distance PQ. Lemma 2. Let P, = (10, Yo). We set P,= (0,6) 

when y,),O and P, = (0, 4) when Y0 < 0. Then P,Q>P,Q for any point Q =(&f(z)) E F, O<:rG@* 

Proof. In view of the total symmetry, henceforth we reckon that y,>O. We have 

If (4 I d = (see the last inequality in (2.1)) and 

I Y, - 6 1 = 8 - (62 - z&“’ g -IO, z. < 0 

Therefore, f (d (Yo - 6) = I f (I) I I Y, - 6 I d - =o. I+0 + f (d Yo < f (4 6. The last inequality is equival- 

ent to the one required. 

Lemma 3. Let an instant T be defined by the condition: Q = (kp, f (kp)) when t = 2’. Then 

PQ>6*forOGtGT, PQ<eforf= T (4.1) 

Proof. With due regard to Lemma 2 we have 

PQ>PoQ - PP, ,, P,Q - PP, 
But from Lemma 1 ensues 

s (2) 
PP,<t =y $ 4 (1 - k+ < 

l+k 
I3 \-------I 0 

Since 1<(1+ k)“(l -k*). In addition 

J'+Q 2 P.Q.-- QQ.. Q.= (2, '3 

Consequently, to prove the first inequality in (4.1) it is enough to derive 

(9 + ?I~)"' - (1 + k) o-11 - f (z) > 6* (4.2) 

Allowing for the conditions 111 d kp< 1/1/c and 6dk2p<'/s , it can be shown that(~'+6~)'/'> 

~+6~. Therefore, inequality (4.2) follows from the relation 
z > (1 + k) a-b + z*p-’ 

which, in its turn, is a consequence of the condition k < (a - i)/(o+l)-I. Thus, the estimate 

pQ>,6' for rc[O, T/ is fulfilled for 

k< min 

Analogously to the above, the proof of the second inequality in (4.1) is reduced to the veri- 

fication of the inequality 

(9 + @)'b 2, T + p-k* + 6 (4.3) 

Taking into account that 
1: = kp, T = a-‘s(kp) < kpa-1 

(see the second inequality in (2.1)), we replace (4.3) by the stronger inequality 

(k2p2 + 6*)"' > ko-’ (1 - La)-‘l’o + k*o + 6 

*) This appears in the original text - Ed. 
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We square this inequality and replace 6 by the larger quantity k?p. Then after cancellations 

we have 
t > a-* (1 - k2)-l + 3k' + 4ko-' (1 - k*)' 

The inequality obtained is a corollary of 

which, in its own turn, follows 

proof of Lemma 3 it suffices to 

i>o-=+4P+4kn-1 

from the condition kg (a - i) (20)~1. Thus, to complete the 

take 

5. Conclusion. If the 

the instant of time t= T ensure 

escaper adopts the strategy constructed in Sect.3, then in 

the second estimate (4.2). This allows the further continua- 

tion of the escape process. Since each time the escaper goes on a path of length s(kp) bound- 

edfrombelowby the constant kp (see the second inequality in (2.1)), by virtue of Assumption 

B escape is possible for all t>O. By the same token we have proved the following theorem (see 

the definition of 6.. and the remark after Assumption A). 

k = min 
I 

(4.4) 

Theorem. Let Assumptions A and B be fulfilled in the game being examined. Thenescape 

is possible from any initial positions P,,Q~,.P,#Qw The escape process can be carried out 

such that the following estimate for the distance PQ between escaper and pursuer is observed: 

PQ > (P,Q,J2, if P,Q, < k* min (1, P) 

PQ > ha min (1, p*), if PO&> k* min (1, P) 

where k is determined by formula (4.4). 

From the proof of the second inequality in (4.1) of Lemma 3 we can note that in case 

P,Q, < k* min {I. PI we can ensure the estimate 
PQ > k' rnin (1, p2) 

beginning with the instant T= s (kp)/o 

If the curvature of curve T is not bounded, then the escaper cannot always ensure that 

the distance PQ can be estimate from below by a positive constant. For example, ifas r 

we take a hyperbolic spiral or the graph of the function Y = zsin(l/z),z>O, then by starting 

from many initial positions the pursuercanget arbitrarily close to the escaper. Ontheother 

hand, the theorem's proof remains in force for regular curves having selfintersections. An 
analogous theorem can be proved for space curves. 
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